On January 12th, 1967, James Bedford passed away. But he had a plan to cheat death. Bedford was the first person to be cryogenically frozen. This process promised to preserve his body until a theoretical future when humanity could cure any illness, and essentially, reverse death.
This is the dream of cryonics. But here’s the catch: to revive people in the future, we need to properly preserve them in the present. So, is it currently possible to freeze a human, preserve them indefinitely, and then safely thaw them out?
To understand the hurdles of human cryopreservation, we need to leave the theoretical realm of cryonics, and turn to the scientific field of cryobiology. This discipline studies the effects of low temperatures on various living systems, and it is true that decreasing an organism’s temperature also decreases its cellular function.
For example, at temperatures below -130 degrees Celsius, human cellular activity grinds to a halt. So if you could bring an entire human body below that temperature, theoretically you could preserve it indefinitely. The hard part is doing this without damaging the body. For example, let’s try to freeze a single red blood cell. It typically sits at a temperature of 37 degrees Celsius in a solution of water and substances known as chemical solutes, which dissolve under certain conditions. But once the temperature drops below freezing, water outside and inside the cell hardens into damaging ice crystals.
Without the correct concentration of water, the chemical solutes are unable to dissolve. And as the water freezes, they become increasingly concentrated in a destructive process known as osmotic shock. Without any intervention, these factors are guaranteed to destroy our red blood cell before it reaches -130 degrees.
Not all cells are this fragile, and many animals have evolved to survive extreme conditions. Some cold-tolerant fish synthesize antifreeze proteins to prevent ice formation at sub-zero temperatures. And freeze-tolerant frogs use protective agents to survive when up to 70% of their body water is trapped as ice.
It’s unlikely that any one creature holds the secret to human cryopreservation. But by researching these adaptations, scientists have developed remarkable preservation technologies, some of which are already employed in medicine.
However, researchers are still trying to improve cryopreservation technology to better manage the ice problem. Many cryobiologists are trying to solve this issue with an approach called vitrification. This technique uses chemicals known as cryoprotectant agents (CPA) to prevent ice from forming.
Some of these have been adapted from compounds in nature, while others have been designed to take advantage of cryobiology’s guiding principles. But in practice, these chemicals allow researchers to store living systems in a glassy state with reduced molecular activity and no damaging ice.
Vitrification is ideal for cryonics, and would help preserve organs and other tissues for medical procedures. But it’s incredibly difficult to achieve. CPAs can be toxic in the high quantities required for large scale vitrification. And even with these chemicals, preventing ice formation requires rapid cooling that lowers temperatures uniformly throughout the material.
That’s relatively easy when vitrifying single cells or small pieces of tissue. But as the material becomes more complex and contains larger quantities of water, staying ahead of ice formation gets challenging. And even if we could successfully vitrify complex living material, we’d only be halfway to using it. Vitrified tissue also needs to be uniformly warmed to prevent the formation of ice, or worse, cracks.
To date, researchers have been able to vitrify and partially recover small structures like blood vessels, heart valves, and corneas. But none of these are anywhere near the size and complexity of a whole human being. So if it’s not currently possible to cryopreserve a person, what does this mean for Bedford and his frozen peers?
The sad truth is that current cryonic preservation techniques only offer their patients false hope. As practiced, they’re both unscientific and deeply destructive, irreparably damaging the body’s cells, tissues, and organs.
Some devotees might argue that, like death and disease, this damage may be reversible one day. Even if scientists could revive people through cryonic preservation, there’s a whole suite of ethical, legal, and social implications which cast doubts on the technology’s overall benefits. But for now, the dream of cryonics is still on ice.
Source: TED-Ed
WORDS BANK:
cryogenically frozen: đông lạnh hóa
preserve: /prɪˈzɜrv/ [B2] bảo quản
reverse: /rɪˈvɜrs/ [C1] đảo ngược
indefinitely: /ɪnˈdɛfɪnɪtli/ [C2] vô thời hạn
thaw: /θɔ/ rã đông
hurdles: /ˈhɜrdlz/ trở ngại
cryonics: /ˈkraɪoʊnɪks/ đông lạnh
decreasing: /dɪˈkriːsɪŋ/ [B1] làm giảm
organism: /ˈɔːrɡənɪzəm/ sinh vật
cellular function: /ˈsɛljələr ˈfʌŋkʃən/ chức năng tế bào
theoretically: /θiˈɔrɪtɪkli/ [C2] về mặt lý thuyết
red blood cell: tế bào hồng cầu
solution: /səˈluːʃən/ dung dịch
chemical solutes: /ˈkɛmɪkəl ˈsɒljuːts/ chất hòa tan hóa học
dissolve: /dɪˈzɒlv/ [C2] tan
ice crystals: /aɪs ˈkrɪstlz/ tinh thể băng
concentration: /ˌkɒnsənˈtreɪʃən/ nồng độ
concentrated: /ˈkɒnsəntreɪtɪd/ cô đặc
destructive: /dɪˈstrʌktɪv/ tàn phá
osmotic shock: /ɒzˈmɒtɪk ʃɒk/ sốc thẩm thấu
intervention: /ˌɪntərˈvɛnʃən/ [C2] sự can thiệp
factors: /ˈfæktərz/ nhân tố
fragile: /ˈfrædʒaɪl/ [C2] dễ vỡ
extreme conditions: điều kiện cực đoan
cold-tolerant: chịu được lạnh
synthesize antifreeze proteins: tổng hợp các protein chống đông
adaptations: /ˌædæpˈteɪʃənz/ [C1] sự thích nghi
cryobiologists: /ˌkraɪoʊbaɪˈɒlədʒɪsts/ nhà đông lạnh học
vitrification: /ˌvɪtrɪfɪˈkeɪʃən/ thủy tinh hóa
cryoprotectant agents: các tác nhân bảo vệ đông lạnh
compounds: /ˈkɒmpaʊndz/ hợp chất
take advantage of: tận dụng lợi thế
glassy state: trạng thái thủy tinh
molecular activity: hoạt động phân tử
tissues: /ˈtɪʃuz/ mô
medical procedures: /ˈmɛdɪkəl prəˈsidjʊrz/ thủ tục y tế
uniformly: /ˈjuːnɪfɔːrmlɪ/ đồng đều
recover: /rɪˈkʌvər/ phục hồi
blood vessels: /blʌd ˈvɛsəlz/ mạch máu
heart valves: /hɑːrt vælvz/ van tim
corneas: /ˈkɔːrniəz/ giác mạc
complexity: /kəmˈplɛksɪti/ [C2] độ phức tạp
irreparably: /ɪˈrɛpərəbli/ không thể khắc phục
devotees: /ˌdɛvoʊˈtiːz/ tín đồ
revive: /rɪˈvaɪv/ hồi sinh
ethical: /ˈɛθɪkəl/ đạo đức
legal: /ˈliːɡəl/ pháp luật
social implications: /ˈsoʊʃəl ˌɪmplɪˈkeɪʃənz/ tác động xã hội
still on ice: đang bị trì hoãn
pass away (v): qua đời
cryonics /ˌkraɪˈɑː.nɪks/ (n): đông xác
catch /kætʃ/ (n): vấn đề
cryobiology (n): lạnh sinh học
a whole suite of (quant): cả một loạt cái gì
cast doubt on (v): đặt ra nghi vấn về cái gì
ỦNG HỘ READ TO LEAD!
Chào bạn! Có thể bạn chưa biết, Read to Lead là một trang giáo dục phi lợi nhuận với mục đích góp phần phát triển cộng đồng người học tiếng Anh tại Việt Nam. Chúng tôi không yêu cầu người đọc phải trả bất kỳ chi phí nào để sử dụng các sản phẩm của mình để mọi người đều có cơ hội học tập tốt hơn. Tuy nhiên, nếu bạn có thể, chúng tôi mong nhận được sự hỗ trợ tài chính từ bạn để duy trì hoạt động của trang và phát triển các sản phẩm mới.
Bạn có thể ủng hộ chúng tôi qua 1 trong 2 cách dưới đây.
– Cách 1: Chuyển tiền qua tài khoản Momo.
Số điện thoại 0947.886.865 (Chủ tài khoản: Nguyễn Tiến Trung)
Nội dung chuyển tiền: Ủng hộ Read to Lead
hoặc
– Cách 2: Chuyển tiền qua tài khoản ngân hàng.
Ngân hàng VIB chi nhánh Hải Phòng
Số tài khoản: 012704060048394 (Chủ tài khoản: Nguyễn Tiến Trung)
Nội dung chuyển tiền: Ủng hộ Read to Lead